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Goal:

To understand the Langlands correspondence
in terms of topologically twisted

N = 4 super Yang-Mills gauge theory
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Conjecture (Langlands)

To each n-dimensional representation of the absolute Galois group,
there is a corresponding automorphic representation of GLn(Q) so
that the Frobenius eigenvalues of the Galois representation agree
with the Hecke eigenvalues of the automorphic representation.
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Q: What are Galois representations?

A: They are n-dimensional representations of Gal(Q/Q).
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Q: What are automorphic representations?
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Adeles

Definition (Ring of adeles)

The ring of adeles of Q is defined as

AQ := R×
res∏

p prime

Qp,

where Qp denotes the p-adic completion of the rationals. Here R
can be viewed as the completion at p =∞ and the above product
is restricted in the sense that:

res∏
p prime

Qp :=

(xp) ∈
∏

p prime

Qp | xp ∈ Zp for all but finitely many p

 .
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Automorphic Representations

GLn(Q)	GLn(AQ)�GLn(Q).

So we have

GLn(Q)	Fun (GLn(Q)\GLn(AQ))

This can be decomposed into irreducible representations, which are
known as the automorphic representations of GLn(Q).
Though not absolutely precise, this is a good first-order description
of what an automorphic representation is.
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Langlands over Finite Fields

Definition (Adele Ring for Fq(t))

The ring of adeles of Fq(t) is defined as

AFq(t) :=
res∏

x∈P1(Fq)

Fq((t − x))

and the above product is restricted as before in the sense that all
but finitely many terms in this product over x lie in Fq[[t − x ]].
Here the completion at the point at infinity corresponds to
Fq((1/t)).
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Langlands over Finite Fields

We naturally have that

OFq(t) :=
∏

x∈P1(Fq)

Fq[[t − x ]]

sits inside AFq(z).
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Langlands over Finite Fields

Automorphic representations → GLn(OF )-invariant functions on
GLn(F )\GLn(AF )

Galois representations → representations of étale fundamental
group (in the unramified case)

Alexander B. Atanasov VFU

Magnetic Monopoles, ‘t Hooft Lines, and the Geometric Langlands Correspondence



Overview of the Langlands Program S-duality in the twisted 4D N = 4 theory Instantons and Monopoles in Gauge Theory ‘Hooft Lines Revisited

Langlands over Finite Fields

Automorphic representations → GLn(OF )-invariant functions on
GLn(F )\GLn(AF )

Galois representations → representations of étale fundamental
group (in the unramified case)

Alexander B. Atanasov VFU

Magnetic Monopoles, ‘t Hooft Lines, and the Geometric Langlands Correspondence



Overview of the Langlands Program S-duality in the twisted 4D N = 4 theory Instantons and Monopoles in Gauge Theory ‘Hooft Lines Revisited

How does this translate into geometry?

Guiding principle 1: Weil’s Uniformization Theorem

Theorem (Weil Uniformization)

Take F the function field for a curve C over Fq. There is a
canonical bijection as sets between

G (F )\G (AF )/G (OF )

and the set of G-bundles over C .
Moreover, there exists an algebraic stack denoted by BunG (C )
whose set of Fq points are in canonical bijective correspondence
with this set.
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How does this translate into geometry?

Guiding principle 2: Étale Fundamental Group

For C an unramified curve, a the étale fundamental group πét
1

corresponds to π1(C ) with C over C.

→ Flat connections on C
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Meta-conjecture of Geometric Langlands

D(BunG(C )) ∼= QC(FlatǦ (C )) (1)
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Q: How does this connect to physics?
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Bosonic part of the action in N = 4 super Yang-Mills

1

e2

∫
M
Tr

F ∧ ?F +
∑
i

dAφ ∧ ?(dAφ) +
∑
i<j

[φi , φj ]
2VolM

 (2)
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Concept (Montonen-Olive Duality)

In 4D N = 4 supersymmetric Yang-Mills theory with gauge group
G and complex coupling constant τ , any correlator of observables

〈O1 . . .On〉τ,G :=

∫
D{Fields}O1 . . .On e

−S

can be rewritten in terms of Yang-Mills theory with inverse
coupling constant −1/ngτ on the Langlands dual group Ǧ as a
correlator of dual operators Õ1 . . . Õn

〈O1 . . .On〉τ,G =
〈
Õ1 . . . Õn

〉
−1/ngτ,Ǧ

.
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Topological Twisting

Physical Concept (Topological Twist)

Given a supersymmetric (SUSY) field theory E , a topological twist
is a procedure for extracting a sector of E that depends only on the
topology of the spacetime manifold. The resulting field theory is
topological.

In the topological twist, the action becomes:

S = {Q,V }+
iθ

8π2

∫
M
Tr (F ∧F )− 1

e2

v2 − u2

v2 + u2

∫
M
Tr (F ∧F ). (3)

Ψ := θ
2π + v2−u2

v2+u2
4πi
e2 is the Kapustin-Witten parameter.
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Equations of Motion in the Twisted 4D Theory

(F − φ ∧ φ+ tDφ)+ = 0

(F − φ ∧ φ− t−1Dφ)− = 0

D ? φ = 0

σ = 0

(4)
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Equations of Motion in the Twisted 4D Theory

At t = 1, the A-model side:

F − φ ∧ φ+ ?Dφ = 0, D ? φ = 0. (5)

“Bogomolny like”
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Equations of Motion in the Twisted 4D Theory

At t = i , the B-model side:

F − φ ∧ φ+ iDφ = 0

D ? φ = 0.
(6)

Rewriting A = A + iφ and letting F = dAA, we get the simpler
(generic) condition:

F = 0.
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Definition (Wilson Loop)

Given a field theory with gauge group G and a finite-dimensional
representation R of G together with a closed loop γ, we define the
Wilson loop operator:

WR(γ) := TrR(Hol(A, γ)). (7)
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Operator-Product Expansion of Wilson Lines

Because of supersymmetry, the limit limγ→γ′ WR(γ)WR′(γ′) can
be evaluated classically.

lim
γ→γ′

WR(γ)WR′(γ′) =
∑
α

irrep.

nαWRα(L′).

This will act as Satake symmetries on the Galois side.
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Q: What are the symmetries acting on the automorphic side?

A: ‘t Hooft Lines

Q: What are ‘t Hooft Lines?
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Instantons on R4

Definition

An instanton is a classical solution to the equations of motion of
minimal action.

S [A] :=

∫
M
Tr (F ∧ ?F ) (8)
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Instantons on R4

Instantons must satisfy the (anti)-self duality equations

F = ± ? F

.

An instanton solution has an invariant instanton number
defined by

k :=
1

8π2

∫
M
Tr (F ∧ F ). (9)

The space of instanton solutions of finite action was
constructed by Atiyah, Hitchin, Drinfeld, and Mannin: the
ADHM construction
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Monopoles on R3

Want to consider “instanton solutions” that are invariant
under translation in one direction

Writing A4 = φ a scalar field, the ASD equations reduce to

F = ?dAφ

These are the Bogomolny equations for magnetic monopoles

Again have an invariant monopole number for a solution to
these equations.
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Important point:

Let S2
R be a two-sphere of radius R in R3.

The insertion of monopoles inside S2
R will modify the

G -bundle over S2
R to have nontrivial Chern classes
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Fact

Representations of Ǧ classify the G-bundles on CP1 = S2.
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From ‘t Hooft lines to Monopoles

Recall in the twisted N = 4 theory we have a connection
1-form A and another ad G -valued 1-form φ

Let I = [0, 1] and C be a closed complex curve.

Take M = R× I × C , with R the “time” direction and take a
Hamiltonian point of view on W = I × C .

We can locally take φ = φ4dx
4 so that on W , φ behaves as a

scalar.

Then, on W , the A-model equations reduce exactly to the
Bogomolny equations for monopoles:

F = ?3DAφ.
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Write a local coordinate z ∈ C parameterizing C and σ ∈ R
parameterizing I . We can gauge away Aσ = 0.

These equations reduce to the following:

∂σAz = −iDzφ.

Can be interpretted as saying that the holomorphic class of
the G -bundle over C remains constant away from singularities.
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T (R1⋁ ,p1)

T (R3⋁ ,p3)

T (R2⋁ ,p2)

C
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The Moduli Space of Solutions

The solutions to the Bogomolny equations of motion on W
with given boundary conditions are then exactly the space of
Hecke modifications with these prescribed singularities.

We denote this space by Z(Ř1, p1, . . . , Řk , pk).

On general grounds we can show that it is independent of the
pi and factors into a product:

Z(Ř1, . . . , Řk) =
∏
i

Z(Ři ).
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T (R⋁ ,p)

C- C+
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The solution space of the Bogomolny equations for a ‘t Hooft
insertion of type Ři is equivalent to the Schubert cell
corresponding to Ři in the affine Grassmannian:

Z(Ři ) ∼= N (Ři ) ⊂ GrG .
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Our “Hilbert Space” of states will be obtained from taking
(intersection) cohomology of the space of solutions to the
Bogomolny equations, i.e.

H(Ř1, . . . Řk) := H•(Z(Ř1, . . . , Řk)) (10)

and we get the symmetric monoidal structure;

H(Ř1, . . . Řk) =
k⊗

i=1

H(Ři ).

This gives the relationship

Ř ↔ H•(N (Ř)).
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and we get the symmetric monoidal structure;
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